Oncoplastic breast surgery: A guide to good practice

A. Gilmour a, R. Cutress b, A. Gandhi c, D. Harcourt d, K. Little e, J. Mansell f, J. Murphy g, E. Pennery h, R. Tillett i, R. Vidyaj, L. Martin e, *

a Canniesburn Plastic Surgery Unit, Glasgow Royal Infirmary, United Kingdom
b University of Southampton and University Hospital Southampton, United Kingdom
c Manchester Academic Health Sciences Centre & Manchester University Hospitals NHS Trust, Manchester, United Kingdom
d Centre for Appearance Research, University of the West of England, Bristol, United Kingdom
e Liverpool Breast Unit, Liverpool University Foundation Trust, United Kingdom
f Gartnavel General Hospital, Glasgow, United Kingdom
g Manchester University Hospitals NHS Trust, United Kingdom
h Breast Cancer Now, United Kingdom
i Royal Devon and Exeter NHS Trust, Exeter, United Kingdom
j The Royal Wolverhampton NHS Trust, Wolverhampton, United Kingdom

ABSTRACT

Oncoplastic Breast Surgery has become standard of care in the management of Breast Cancer patients. These guidelines written by an Expert Advisory Group; convened by the Association of Breast Surgery (ABS) and the British Association of Plastic, Reconstructive and Aesthetic Surgeons (BAPRAS), are designed to provide all members of the breast cancer multidisciplinary team (MDT) with guidance on the best breast surgical oncoplastic and reconstructive practice at each stage of a patient’s journey, based on current evidence. It is hoped they will also be of benefit to the wide range of professionals and service commissioners who are involved in this area of clinical practice.

© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Introduction

Statement of purpose

These guidelines were developed to optimise key clinical and patient-reported outcomes experienced by patients undergoing partial and total breast reconstruction. They are designed to complement existing guidelines available on the Association of Breast Surgery (ABS) Guidance Platform [1] and the British Association of Plastic, Reconstructive and Aesthetic Surgeons (BAPRAS) clinical guidance and regulations site [2].

These oncplastic guidelines also apply to women requesting risk reducing surgery and the very small number of men who request or require reconstructive surgery.

The purpose of these Guidelines is to provide all members of the breast cancer multidisciplinary team (MDT) with guidance on the best breast surgical oncoplastic and reconstructive practice at each stage of a patient’s journey, based on current evidence. It is hoped they will also be of benefit to the wide range of professionals and service commissioners who are involved in this area of clinical practice.

Methods

A multidisciplinary working group was convened by the ABS and the BAPRAS with expertise in the diagnosis, support, treatment and follow up of patients considering Oncoplastic Breast Surgery (OPBS) to develop evidence-based recommendations. Previous guidance [3] was reviewed and updated through consensus meetings and by collaboration on a working document between meetings. A draft document was sent to the executive of the ABS and the BAPRAS for consultation and approved following finalisation. The guidelines represent a consensus opinion on the optimal management of patients having OPBS informed by peer-review publications.

The Guidelines are not intended to be prescriptive or legally

* Corresponding author.
E-mail address: lee.martin@liverpoolft.nhs.uk (L. Martin).
binding but should be used to inform clinical decision making. Ultimately, members of the MDT remain responsible for the treatment of patients under their care.

Consideration of OPBS

OPBS should be considered in all patients who require surgery following a breast cancer diagnosis. OPBS includes therapeutic mammoplasty, partial breast reconstruction and total breast reconstruction (immediate or delayed). If certain procedures are not available locally then pathways should be established to ensure timely referral to an appropriate centre.

Communication with patients about Breast Reconstruction (BR) is detailed in the National Institute for Health and Care Excellence (NICE) guideline NG101: Early and locally advanced breast cancer diagnosis and treatment [4] and other national guidelines. For delayed breast reconstruction (DBR) there should be a clear and agreed referral pathway from primary and secondary care. No time limit should be placed on performing DBR after mastectomy.

The following should be clearly documented for all patients as part of the MDT discussion and clinic consultation:

- If a mastectomy is recommended the indication(s) should be documented.
- Consideration of oncological options (neo-adjuvant therapy) and/or oncoplastic techniques which may reduce the probability of or avoid mastectomy or a significant defect following traditional breast conservation surgery.
- BR (immediate or delayed) should be considered in all suitable patients in whom a mastectomy is recommended.
- If Oncoplastic Techniques or Breast Reconstruction are not thought to be appropriate then the rationale for this should be fully discussed and documented.
- The likely requirement for adjuvant radiotherapy.
- The likely requirement for genetic testing.

All women must have the opportunity to meet their breast team and discuss options with their surgeon and Breast Care Nurse (BCN) prior to admission.

Assessment for OPBS

The following factors should be considered when assessing patients for OPBS and may influence the timing and choice of techniques available for individual patients allowing for the patients’ own preferences, expectations, goals and attitudes to risk.

Patient factors

The following patient factors should be considered:

- Local and systemic disease burden.
- Previous radiotherapy to the breast/chest wall.
- Familial and genetic risk factors.
- Co-morbidities
 - Including BMI, Diabetes, connective tissue disorders and cardiorespiratory conditions.
- Pre-existing shoulder or musculo-skeletal problems.
- Drug history
 - e.g. immunosuppressants and anticoagulants.
- Smoking history
 - Including nicotine containing products.
- Occupation, activities and lifestyle.
- Likely impact of recovery time on family, employment and daily activities.

Oncological factors

- Oncological principles should not be compromised, and always take precedence.
- Neo-adjuvant systemic therapy should be considered in appropriate patients. This may benefit patients by reducing requirements for mastectomy, OPBS complexity and volume of excision in patients suitable for breast conservation.
- For Immediate Breast Reconstruction (IBR), the likelihood of adjuvant treatment (in particular radiotherapy) may influence decision making.
- Overall IBR does not lead to clinically significant delays to adjuvant therapy however post-operative complications may be associated with treatment delay [5].
- Where there are concerns that IBR may lead to delays in primary treatment; systemic neo-adjuvant therapy, if appropriate, or DBR may be considered. Significant delays to primary breast cancer surgery may be associated with an increased risk of mortality [6].
- Extent of planned skin resection and suitability for nipple preservation should be discussed and clearly documented in patients undergoing IBR.
- All relevant cancer treatment targets should apply and transfer with the patient if referred to another centre.
- For patients referred for OPBS from a separate unit, a full discharge summary should be sent back to the referring or treating MDT, including copies of operative notes, histopathology slides and/or reports and a post-discharge plan. A clear process for continuing care and follow-up should be agreed upon.

Radiotherapy factors

Previous or adjuvant radiotherapy will influence decision making with regards to OPBS and specific factors should be considered.

- **Oncoplastic Techniques**
 - Oncoplastic Breast Conservation Surgery with adjuvant radiotherapy is associated with high rates of disease-free survival, overall survival and low rates of local recurrence [7].
 - Patients not suitable for adjuvant radiotherapy are usually not good candidates for oncoplastic breast conservation surgery.
- **Implant Based Breast Reconstruction**
 - Radiotherapy is associated with higher rates of complications, implant loss rates and poorer cosmetic outcomes in patients undergoing implant based breast reconstruction [8].
 - The use of implant only reconstruction in patients with previous, or planned chest wall radiotherapy should be considered carefully.
 - Use of expanders incorporating integrated metal ports may need to be discussed with local clinical oncology departments to ensure device compatibility with adjuvant radiotherapy protocols.
- **Autologous Breast Reconstruction**
 - Despite a lack of robust evidence to support or oppose immediate autologous reconstruction in patients known to require Post Mastectomy Radiotherapy (PMRT) UK practice is varied. Many centres routinely perform immediate autologous reconstruction with planned PMRT whereas others follow the “Delayed-Immediate” [9] or “IDEAL” [10] method, whereby patients known to require PMRT undergo immediate implant/expander “spacer” reconstruction to maintain the skin envelope with subsequent switch of implant/expander to autologous tissue on completion of adjuvant
treatment. This subjects patients to further planned procedures and cost but reduces concerns of long-term irreversible radiotherapy effects on flap reconstruction. oPMRT following Immediate Autologous Reconstruction is associated with fewer complications, fewer failures and better quality of life in comparison to PMRT following immediate implant based breast reconstruction [11]. oPMRT is detrimental to autologous reconstruction irrespective of whether performed in an immediate or delayed fashion [12]. Immediate autologous reconstruction with PMRT may actually show lower [12] or at least similar complication rates (including fat necrosis) [13] to that of delayed autologous breast reconstruction with a history of PMRT. However, there is a higher incidence of revisional surgery in the immediate group [12]. Overall satisfaction rates are similar for all groups [15]. oDespite previous concerns that the volume of tissue may interfere with planned delivery of chest wall radiotherapy, Immediate autologous reconstruction with PMRT is oncologically safe [14]. oTherefore, these guidelines agree with recommendations that immediate autologous reconstruction should still be offered to all suitable patients expected to have PMRT [4].

Technical factors

There should be a complete assessment of breast morphology which may include the measurement and documentation of:

- Bra cup size/volume/ptosis of both breasts.
- Notch to nipple distance, nipple to inframammary distance.
- Base width/height.
- Nipple sensation (particularly if considering mammoplasty).
- Breast/chest wall asymmetry.
- Skin quality.
- Records from previous surgery.
- Record and assessment of damage from previous radiotherapy.

Assessment of technical factors should include:

- Breast cancer location and any skin involvement including tumour proximity to nipple.
- Tumour to breast ratio (when considering mammoplasty/perforator flaps).
- Suitability for nipple preservation in mastectomy and IBR.
- Assessment of donor sites and suitability (IBR and perforator flaps).
- Options for contralateral surgery.

Photographic assessment

- Medical photography must be available in all units. A full and tiered consent process must be followed with each patient. Pre-operative and successive post-operative views (including longer term) should be taken for consenting patients undergoing OPBS. A standard set of views should be acquired in a studio setting for each patient.
- All digital images must be stored securely with limited access.
- Photographic images should be made available for the oncoplastic breast MDM.
- Patient consent must be obtained to use images for teaching and or publication. The Institute of Medical Illustrators guidelines should also be followed [15].

Consideration of contralateral symmetrisation surgery

- Symmetrising surgery should be offered to patients (immediate or delayed) regardless of time of original surgery.
- If restrictions to contralateral surgery are apparent within the host hospital area, the patients should be informed of local restrictions at the outset.
- Where possible consider immediate contralateral symmetrisation surgery, with specific attention paid to the likelihood of adjuvant chemotherapy and whether surgical complications could result in any delay with the delivery of chemotherapy (a delay of over 8 weeks may lead to increased mortality) [16].
- In bilateral cases, a two-team approach is recommended to shorten operating time which has been shown to reduce complication rates [17].

Considerations specific to delayed breast reconstruction

When DBR is considered, full clinical assessment should be performed when indicated and the results should be available to inform decision-making.

- A mammogram of the contralateral breast should have been performed within the preceding 12 months.
- Consider re-staging in high risk patients prior to undertaking major delayed total breast reconstruction surgery.
- Tamoxifen therapy is associated with a 2.3 fold increased risk of venous thrombo-embolism (VTE) [18], this risk is exacerbated in patients undergoing surgery after recent chemotherapy [19] or those undergoing longer procedures [20]. Surgical procedures lasting longer than 90 min (total anaesthetic + surgical time) are considered an independent risk factor for VTE [21]. Discontinuing Tamoxifen for a period of 3 weeks results in 98% of the active drug being eliminated from plasma [22]. A proposed management algorithm based on current evidence stratifying risk of VTE in patients on Tamoxifen suggests the following [22]:
 - In low risk patients (i.e. undergoing short procedures (<90mins) with no/minimal other risk factors for VTE)
 - Tamoxifen therapy can be continued pre and post operatively.
 - In moderate risk patients (i.e. undergoing longer procedures (>90mins) or recent chemotherapy without other risk factors for VTE)
 - Tamoxifen should be discontinued for 3 weeks prior to surgery but that it can be restarted immediately post-operatively at the standard dose.
 - In the high risk patients (those with other associated risk factors for VTE, obesity, family history, comorbidities)
 - Tamoxifen should be stopped for 3 weeks pre-operatively and not restarted until 3 weeks post-operatively.
- At least 6 months should elapse before DBR following adjuvant radiotherapy. Carrying out DBR >12 months after radiotherapy may result in fewer post-operative complications [23].

There should be no time limit on DBR, however if such restrictions exist, the patient should be informed so plans can be made to ensure a DBR is possible.

Considerations specific to contralateral risk reducing mastectomy (CRRM)

Contralateral risk reducing mastectomy when a breast cancer has been diagnosed is a complex and emotive area for the patient and the responsible team.
There needs to be a clear discussion with the patient about the definition of risk reduction, i.e. reducing risk of death from a contralateral breast cancer or the risk reduction of a new primary breast cancer in the contralateral breast.

A patient is likely to substantially over-estimate risk of dying from a contralateral breast cancer following diagnosis of the ipsilateral cancer [24].

There is very little evidence to support contralateral risk reducing mastectomy as a tool to reduce the risk of breast cancer death in all but the highest risk patients (i.e. carriers of breast cancer related pathogenic variant genes for example BRCA1).

When considering such surgery in the immediate setting, the patient is required to have the request discussed at an MDT with rapid psychology review.

The oncological factors need to be considered with the option of delayed CRRM if there is a possibility of complications delaying adjuvant treatments.

When considering lifetime risk of a contralateral breast cancer, it is useful to consider the Manchester guidelines with a 25% or over lifetime risk, used to sanction such surgery [25].

Non-surgical treatments (e.g. endocrine therapy) for the index cancer must be considered with the associated risk reduction in contralateral breast tumour risk.

If a patient is considering contralateral mastectomy with/without reconstruction for symmetry purposes, discussion at an oncoplastic MDT and psychological opinion prior to such surgery should be sought [26].

If the patient warrants a contralateral risk reducing mastectomy but only wishes surgery on the symptomatic side and abdominal flap reconstruction then they should be informed that abdominal flap reconstruction can only be utilised once and may be better served for a bilateral procedure if donor options limited.

Patient information, decision making and psychosocial support

Information provision

Patients differ in the amount and type of information they need and the extent they wish to be involved in treatment decision making. Compassionate, patient-centred care is essential and patient support and counselling may require more than one consultation.

Discussions should take place in a private setting avoiding emotive or persuasive language and the patient’s understanding of information received should be checked. Poor or inadequate pre-operative information provision is associated with regret and dissatisfaction with outcome [27]. Support and information should also be available to partners and family members if required.

All patients should have easy access to:

- Information in languages other than English, and/or interpreters if necessary
- Information that meets their changing needs over time in a choice of formats (e.g. written information, multimedia resources).
- Photos representing a range of procedures, outcomes, donor sites with a variety of different patients at different time intervals.
- Opportunities to discuss experiences with other patients (e.g. through Breast Cancer Now’s Someone Like Me service) [28].
- Details of local and national support/information services (see Appendix).
- Contact details
- Out of hours care.
- Psychological and emotional support.

All women should be informed about:

- All relevant oncological options for which they are suitable, irrespective of whether they are available locally.
- If OPBS is contraindicated, this should be documented in the patient’s records.
- The full range of external prostheses available, with time scales of when they can be utilised should be discussed.
- The number of procedures that may be needed to achieve an acceptable outcome.
- Possible outcomes of OPBS including:
 - The look and feel of a reconstructed breast and the fact that the exact aesthetic outcome cannot be predicted prior to surgery.
 - The impact of surgery on the appearance of donor sites, if appropriate.
 - The time taken to adjust to a reconstructed breast and an altered body image (typically 1 year or more), and the potential impact on quality of life, emotional well-being and intimacy.
 - The range of physical and psychological impacts of surgery (e.g. discomfort, lack of sensation, self-consciousness, body image issues) which contribute to (dis)satisfaction with outcome.
- Planned additional procedures (e.g. nipple reconstruction, lipomodelling and contralateral surgery) which may be required and the possibility of unplanned procedures.
- Their risks of complications associated with specific procedures.
- How to recognise and act on concerns about potential complications post-surgery.
- Whether implants will need to be routinely replaced in the absence of concerns.
- Whether revision or replacement may be required for adverse symptoms or to improve cosmetic outcomes in the longer term.
- The type of implant or expander to be used (if relevant), and advised to retain this information.
- Possible longer-term outcomes, including:
 - Local and regional recurrence.
 - Asymmetry.
 - The effects of weight changes and of contralateral ptosis.
 - Chronic seroma.
 - Chronic pain.
 - Shoulder stiffness and pectoral girdle disability.
 - Abdominal hernias and other sequelae of abdominal flaps.
 - Fasciculation (muscle twitching) with muscle flaps.
 - Hypertrophic/ Keloid scarring.
 - Axillary fullness following Latissimus Dorsi reconstruction.
 - Revisional surgery including lipomodelling, flap, scar and implant revisions.
 - Quality of life, physical, cosmetic and psychological well-being reported by patients undergoing different types of reconstruction over time.
- Their hospital stay and the post-surgical period, including:
 - The likely length of stay.
 - What they should take with them into hospital.
 - Likelihood of post-surgical drains.
 - When they are first likely to be able to look at their reconstruction/donor site(s) and what they can expect to see at this time. They should be warned about any potential swelling or shape abnormalities which may be present initially and the likely duration this can take to settle [29].
Discussions about surgical options. Their post-operative recovery period regarding:
- Exercise and physiotherapy.
- The likely recovery time, time to return to normal activities, work and driving, lifting, sport, exercise.
- Post-operative underwear/garments.
- Contact details for difficulties arising out-of-hours or at weekends.
- Ongoing research including, but not limited to, trials, national audits, and registries.
- Consent should follow established NHS and General Medical Council (GMC) guidelines.

Supporting patients’ decision making

Decisions about OPBS are often complex and every effort must be made to give all patients sufficient time and support to consider their options with the operating surgeon(s) and reach a shared decision [30]. A clinical nurse specialist should be available for discussions about surgical options.

Shared decision making requires an understanding of what matters to each patient, providing information that meets their individual needs and is understood by them (see GMC guidelines 2020 [31]. Patients should be helped to consider what they want to achieve from OPBS (i.e. their own goals), and their expectations about outcomes should be clarified [32].

Decision aids/tools can be useful additions to the standard provision of care and support for women considering OPBS [33,34].

Patients who are finding it particularly difficult to make a decision should be identified and referred for additional support, through clear referral routes.

Psychological assessment and support

- The OPBS service should have a documented strategy for psychological assessment and support if needed.
- Patients should:
 - be reassured that discussions about psychosocial aspects of OPBS is a standard, routine part of care.
 - have easily available support if they experience complications, since these can be particularly distressing [35].
- The psychological well-being of each patient and their potential need for further support should be assessed at key points including pre-operatively, during their hospital stay, prior to discharge and during routine follow-up appointments by a suitably trained member of the MDT (e.g. a Specialist Breast Care Nurse (BCN) and/or Breast Reconstruction Nurse Specialist with expert knowledge and skills in OPBS for Level 2 support).
- Where complex psychological difficulties are identified, referral to specialised psychology services (Level 3 and 4) will be required. Patients at high risk (previous psychiatric history, poor coping skills, limited social support) should be monitored post-operatively and further contact to establish psychological recovery should be negotiated and agreed with the patient. This arrangement should be documented in the hospital notes.
- Established screening tools (e.g. HADS or PHQ9/GAD7) should be considered to assess psychological morbidity and adjustment to OPBS.

Surgical factors

Marking

- Appropriate pre-operative markings should be undertaken in a suitable private space that has an examination couch and mirror. A chaperone should be present.

Margins in breast conservation surgery

- ABS advises a 1 mm (1 mm) minimum clear radial margin is achieved after breast conservation surgery for early invasive breast cancer and for in situ cancer [36].
- Further surgery (re-Excision or mastectomy) should be offered where required to achieve clear margins.
- Routine excision of skin overlying tumour in breast conservation surgery is not routinely recommended. Where tumours are superficial however (close to or at the anterior margin) pre-operative oncoplastic planning should consider the appropriateness of oncoplastic excision of the overlying skin to facilitate achieving a clear anterior margin.

Mastectomy

Oncological outcomes following SSM & NSM

A number of observational studies have reported on the short to medium term oncological outcomes of SSM and NSM in women undergoing therapeutic or risk reducing mastectomies [37—42]. They report low rates of subsequent breast cancer development. However a Cochrane review of NSM reported the evidence to be of low quality and was inconclusive due to high risk of selection bias [43]. Given the unlikely reporting of any randomised data long term follow up studies in this cohort are essential to ensure low rates of loco-regional breast cancer incidence are maintained.

NSM and SSM are contraindicated in patients with inflammatory breast cancer and caution should be applied in considering these techniques in more locally advanced cancers (e.g. T4 tumours) [44].

Skin sparing mastectomy (SSM)

The aim of SSM in patients is removal of all breast glandular tissue, whilst preserving the native skin envelope which involves preserving a viable blood supply to the entirety of the envelope of the breast.

Therefore, precise surgical technique is required to dissect exactly within the plane between subcutaneous fatty tissue carrying blood supply to the skin envelope and the underlying paracycyma (‘the mastectomy plane’) [45—47]. Such technique allows for maximal removal of breast glandular tissue and minimal incidence of mastectomy flap necrosis.

Thicker mastectomy flaps are more likely to prevent damage to subcutaneous vessels but risk of leaving breast tissue in situ. Studies examining the presence of residual breast tissue following SSM have shown a greater prevalence of breast terminal ductal lobular units in the presence of thicker mastectomy skin flaps [46,48]. Certain areas of the mastectomy plane may harbour greater risk of residual breast epithelium, in particular the lower outer
The incidence of mastectomy skin flap necrosis is increased in the presence of smoking, previous radiotherapy, diabetes, obesity and multiple comorbidities [50,51].

Choice of incision can also affect incidence of mastectomy flap necrosis but there is no evidence that use of differing electrocautery devices or scalpel dissection affect necrosis rates [52,53].

SSM is considered oncologically safe in the following clinical settings; risk reduction surgery in high risk patients, early stage, biologically favorable, invasive breast cancer or Ductal Carcinoma In-Situ (DCIS) [54].

Recommendations:
- The optimal thickness of a SSM flap should be judged for each individual patient.
- Special consideration should be given to maintaining dissection in the plane between subcutaneous adipose tissue and underlying breast parenchyma, particularly in the lower outer quadrant of the breast. If there is concern intra-operatively about potential proximity of malignant tissue at the anterior mastectomy margin, the relevant area on the mastectomy skin flap should be marked with a radiologically visible subcutaneous clip or a percutaneous non-absorbable suture. This will facilitate reoperative surgery to remove involved dermis should this be noted at the postoperative MDT.
- Wise pattern incisions ("inverted T incisions") may increase rates of skin flap necrosis in some circumstances.

Nipple sparing mastectomy (NSM)

The technique for NSM is similar to SSM in the development of uniform thickness mastectomy flaps with precise adherence to surgery within the mastectomy plane. However, in NSM, the nipple-areolar complex is left in situ. The presence of the natural nipple-areolar complex is associated with psychological and aesthetic benefits for women [55,56]. The process of nipple preservation requires a balance between two competing factors; removing the maximum amount of retro-areolar breast tissue whilst maintaining a viable blood supply to the nipple.

Whilst the ducts of the breast should be excised during surgery, there is no clear evidence on how aggressively ducts should be excised from the nipple and retroareolar area.

Capturing occult malignancy can be done by sending retro-areolar/nipple core tissue for histological examination separately to the main mastectomy specimen [42,57,58].

Leaving a 3 mm rim of tissue at the nipple areolar complex preserves at least 66% of the nipple microvessels [59]. Rates of nipple necrosis are increased with transareolar or circumareolar incisions, in smokers and patients undergoing previous breast irradiation [47,60].

NSM is considered oncologically safe in the following clinical settings; risk reduction surgery in high risk patients, early stage, biologically favorable, invasive breast cancer or DCIS at least 2 cm from the nipple, imaging findings indicating no nipple involvement, no nipple discharge and no Paget’s disease [44].

Recommendations:
- Tissue excised from the nipple areolar complex should be sent for histological examination separately from the main mastectomy specimen. In NSM performed for risk reduction purposes, there is no evidence that intraoperative frozen section analysis of retro-areolar tissue is of benefit.
- The mastectomy specimen itself should have the site of the recently detached nipple areolar complex clearly marked in order for accurate localisation of any occult malignancy should this be discovered. If there is concern about potential proximity of malignant tissue at the anterior mastectomy margin (abutting the skin), the relevant area on the mastectomy skin flap should be marked with a radiologically visible subcutaneous clip or a percutaneous non-absorbable suture. This will facilitate reoperative surgery to remove involved dermis should this be noted at the postoperative MDT.
- Transareolar and circumareolar incisions are associated with higher rates of nipple areolar complex necrosis in comparison to radial and inframammary fold incisions [61–64].
- NSM should be used with caution in women who smoke or have had previous breast/chest wall irradiation [65].

Breast conservation with oncoplastic techniques

Where it is oncologically safe, breast conservation should be considered in all patients. Techniques have evolved to increase the availability of breast conservation.

Equipment required for oncoplastic breast surgery within the operating theatre includes:

- Mammographic quality monitor(s). The resolution should be sufficient to enable satisfactory visualisation of fine micro-califications (eg 5 megapixel) [66]. Such monitors are usually of a higher resolution than standard monitors used for viewing CT images.
- Equipment or facilities to enable immediate intraoperative specimen radiography [67].
- Equipment for sentinel lymph node localisation.
- Equipment, according to local protocols, for localisation and surgery of impalpable and screen detected lesions.

All equipment should be regularly serviced and there should be contingency planning in the event of failure of a piece of equipment (eg back-up equipment).

When performing volume displacement or replacement procedures the tumour bed should be localised with titanium clips to aid accurate delivery of radiotherapy according to local protocol.

Volume displacement techniques

- In the larger, more ptotic breast, breast reduction techniques in the form of therapeutic mammoplasties facilitate removal of large areas of tissue, with concomitant reshaping of the breast. Therapeutic mastopexies can also produce a similar result in smaller breasts.
- Care should be taken to reduce potential wound healing complications/fat necrosis which could potentially delay adjuvant treatment(s). Examples include considering longer vertical limb lengths, narrower wise patterns, wider pedicle bases and lower tension closure in comparison to aesthetic breast reduction/uplift surgery.
- Technically in nipple preserving therapeutic mammoplasty/mastopexy it is often easier to base the nipple on a separate pedicle from that used to fill the defect (secondary pedicle) as it allows greater freedom of inset with less risk of nipple compromise.
- Where the nipple has to move a long distance or looks compromised on table one option to consider is converting the nipple-areolar complex to a free nipple graft.

Volume replacement techniques

- Volume replacement techniques enable breast conservation for larger tumours in smaller breasts. For lateral defects, the lateral intercostal artery perforator (LICAP) and lateral thoracic artery perforator (LTAP) flaps can be used. Caudal defects can be filled
A. Gilmour, R. Cutress, A. Gandhi et al.

European Journal of Surgical Oncology xxx (xxxx) xxx

Partial breast reconstruction

- In patients with larger defects (i.e. one-quarter to one-half of the breast) other options could be considered such as the Thoracodorsal Artery Perforator (TDAP) flap or free mini-transverse upper Gracilis (TUG) flap.
- Wherever larger excisions are performed and more complex reconstructive techniques are used, clear margins should be ensured, prior to reconstruction (i.e. fill cavity with water and await formal pathology prior to reconstruction as second stage within a few weeks or fresh frozen section).

Total breast reconstruction

When a mastectomy is oncologically dictated, there are various methods used to perform total breast reconstruction. These can either be entirely implant based, autologous or a mixture of both techniques.

Implant based breast reconstruction

Implant based reconstruction can be used, with either a fixed volume implant or tissue expander being placed in the subpectoral or prepectoral position, with support from an acellular dermal matrix or dermal flap. These techniques can be used as a permanent solution to breast reconstruction, or as a delayed-immediate solution, with a view to preserving the skin envelope and performing a delayed autologous reconstruction.

Patients should be informed:

- Modern breast implants do not have a specific lifespan and do not need to be routinely replaced in the absence of concerns.
- Revision or replacement may be required for adverse symptoms or cosmetic deformity in the longer term. Patients should ask their GP to refer them back to their original provider for assessment.
- That there are differences between tissue expanders and fixed volume implants, between saline and silicone-based devices and between textured and smooth coatings.
- Of the type of implant or expander used, which they should be advised to retain.
- Up to 1 in 10 patients experience loss of their implant in the first 3 months after surgery [68].
- Up to 1 in 4 patients may require revisional surgery in the first 10 years [69].

Patients should also receive information about other potential complications of implants/expanders and this should be documented including:

- Infection.
- Extrusion.
- Capsular contracture.
- Rupture.
- Silicone granuloma.
- Silicone bleed.
- Implant malposition.

- Breast Implant Associated — Anaplastic Large Cell Lymphoma (BIA-ALCL).

Acellular dermal/ synthetic matrices (ADM’s). The use of implant based reconstruction accounts for 53% of immediate reconstructions following mastectomy in the UK [70]. The majority of these are now being performed with a biological or synthetic mesh [68]. The advantages of biologic or synthetic mesh used as an adjunct for implant based breast reconstruction over traditional total submuscular techniques are to improve lower pole projection, the potential to go straight to permanent breast implant, reduced postoperative pain, improved aesthetic outcome, and decreased operative time [71]. Despite widespread adoption in the UK, these procedures are associated with morbidity [68].

There is no clear consensus on the ideal biologic or synthetic mesh.

Specific points for discussion are:

- The origin of the specific mesh should be discussed.
- Whether the mesh remains permanently or is expected to be absorbed.
- Patients should be informed of local and global experience with the mesh used including uncertainty regarding long term outcome.
- Knowledge and acceptance that the reconstruction involves a breast implant.
- Patients should be aware that revisional surgery is frequent in the early stages following reconstruction.
- That a drain may be left in-situ for up to two weeks.

Patients need to be aware of the risks of complications, local and personal complication rates. Complications are common in implant only mesh assisted or dermal sling procedures. By 3 months national rates are [68].

- Readmission - 18%.
- Infection - 25%.
- Reoperation - 18%.
- Implant loss - 9%.

Patients opting for a single-stage procedure must be informed preoperatively of the possibility of a two-stage procedure using an expander because of possible impaired vascularisation of the skin flaps.

Patients should be aware that long term results of implant-based reconstruction may deteriorate and subsequent planned surgery for cosmetic concerns may be required. Funding for further procedures may become limited. Cosmetic outcome of further procedures may be limited.

Surgeons should be familiar with and adhere to the ABS & BAPRAS Guidelines on ADM based breast reconstruction [1,2].

Strategies to decrease implant related complications. Implant based reconstruction techniques inevitably carry some risk, most notably implant failure and explantation which is costly to both the patient and providers [71]. The National Mastectomy and Breast Reconstruction Audit demonstrated an implant loss rate of 9% at 3 months in IBR and 7% in delayed reconstruction [72]. However, the current national target is to have less than 5% implant loss rate at 3 months post-operation.

Factors shown to increase implant failure include:

- Smokers (consider using nicotine replacement therapy).
- Patient BMI>30.
- Pre-existing Diabetes Mellitus.
- Concomitant axillary clearance.
- Using implants >500 cc.
- Neo-adjuvant chemotherapy.
- Pre-operative radiotherapy.

Pre-, intra- and post-operative protocols [17,73] have been developed and shown to reduce implant loss rates at 3 months [73]. Pre-operative risk reducing measures include:

- Careful patient selection to minimise patient risk factors.
- Single dose of prophylactic intravenous antibiotic at induction.

Intra-operative risk reducing measures include:

- Reduce personnel in theatre and avoid opening doors (use of locks and signs).
- Reduce operative time- use 2 surgical teams for bilateral cases.
- Consider using laminar air flow if available.
- All theatre personnel to wear facemasks when implant is opened.
- Patient to be warmed for the duration of surgery.
- Nipple shields to be applied for unilateral cases.
- Patient to be prepped with alcoholic chlorhexidine.
- Surgeons and scrub staff to double glove, surgeons and scrub staff to change outer gloves to a clean pair prior to handling the implant.
- Clean drape to be placed before implant insertion.
- Implant only handled by the surgeon (following glove change).
- Trim skin edges.
- Use bacteriostatic sutures and skin glue to seal the wound.
- Tunnel drains.
- Consider using tissue expanders and negative pressure dressings in high risk patients.

Post-operative risk reducing measures include:

- Consider selective use of extended antibiotic prophylaxis in those patients deemed “high risk” for infection.
- Drains to be removed when draining <30 mls on 2 consecutive day.
- Early debridement for small wound problems and early outpatient review.

Radiotherapy

- Patients requiring post-operative chest wall radiotherapy have an increase in complications.

- There is an increased risk of capsular contracture post radiotherapy. ADM does not increase the risk of capsular contracture post radiotherapy and there is emerging data to suggest it may potentially reduce the severity of capsular contracture [74] however, there is no definitive data.

- Those who have received radiotherapy prior to reconstruction have an increased risk of major complications and implant loss [75].

Breast and Cosmetic Implant Registry. The Breast and Cosmetic Implant Registry (BCIR) was opened on 10 October 2016. It captures the details of all breast implant procedures completed in England and Scotland by both the NHS and private providers [80].
The Department of Health and Social Care directed NHS Digital to carry out this work in response to recommendation 21 of the Keogh Review of the Regulation of Cosmetic Interventions [81]. The registry records the details of any individual who has breast implant surgery, for any reason, so they can be traced in the event of a product recall or other safety concern relating to a specific type of implant. It also allows the identification of possible trends and complications relating to specific implants.

All providers of breast implant surgery are expected to participate. This is mandatory in the NHS.

Total autologous breast reconstruction

Total autologous reconstruction includes pedicled and free flaps. The most commonly used pedicled flap is the extended latissimus dorsi flap. Whilst the deep inferior epigastric artery perforator (DIEP) flap accounts for the most commonly used free flap. Other autologous options for women who are not suitable for DIEP flaps include the muscle sparing transverse rectus abdominis myocutaneous (MS-TRAM), transverse upper gracilis (TUG), profunda artery perforator (PAP), lumbar artery perforator (LAP), superior gluteal artery perforator (SGAP) and inferior gluteal artery perforator (IGAP) flaps. Many surgeons now consider the DIEP flap as the gold standard in free autologous total breast reconstruction with the literature supporting low (2.2% total/3.1% partial) flap failure rates in unilateral flaps [82] and re-operation for any complication as 15.9% [83]. In addition, autologous techniques can be augmented with lipofilling, or implants can be used to augment the volume of autologous reconstructions, such as Latissimus Dorsi flaps.

UK National Flap Registry. The UK National Flap Registry (UKNFR) is a registry for all pedicled and free flaps including breast.

The registry has been live since August 2015 and offers the ‘Surgeon Dashboard’ (launched in July 2017) allowing users to download personal data (numbers, case mix, gender, age, success rate, return to theatre).

Lipomodelling

Delayed lipomodelling has been shown to be oncologically safe for the correction of breast conservation defects; though good results can be difficult to achieve following radiotherapy. A delay of 6 months after radiotherapy or until the first annual surveillance mammogram is suggested [84]. Enrichment of the fat grafts using adipose-derived regenerative cell (ADRCs) has also been shown to be safe and efficacious for this purpose [85].

Immediate lipomodelling at the time of breast conservation may reduce the incidence of postoperative deformity but should be considered experimental until long term results are published [86,87].

Lipomodelling can improve volume and contour in implant or autologous total breast reconstruction [88,89]. Lipomodelling has been shown to improve the quality of irradiated tissues, especially in implant based procedures [90].

Care should be taken in the selection of donor sites for fat harvest in patients who may require subsequent total autologous reconstruction (i.e. don’t use the lower abdomen as a donor site for fat harvest to improve implant coverage in a patient highly likely to require switch to autologous tissue such as a DIEP flap in future).

The use of lipomodelling as the sole technique for breast reconstruction has been limited to selected patients because of the number of procedures required to achieve a satisfactory volume [91]. It is best suited to small-breasted women with suitable donor sites in whom other types of reconstruction may not be possible or desired.

Radiological surveillance after OPBS and total breast reconstruction

Bilateral annual surveillance mammography is recommended after OPBS. During the first 6–12 months after surgery and radiotherapy post treatment changes are most likely to occur and can be difficult to accurately assess radiologically [92]. A 12 month delay following OPBS is recommended. Radiology should be informed of any patient who undergoes lipomodelling as a secondary procedure.

There is no indication for ipsilateral imaging following mastectomy and either implant or autologous reconstruction, recurrence occurring in the mastectomy flaps. Patients should undergo contralateral annual mammographic surveillance.

Routine breast MRI scanning is not recommended unless women carry additional risk factors [93].

Surgical ERAS considerations

As partial and total breast reconstruction techniques have improved, surgical teams have aspired to reduce perioperative effects, such as starving, increased catabolism, nausea, vomiting and dependence on opiates whilst reducing length of stays and reducing complication rates by implementing enhanced recovery after surgery (ERAS). These evidence based changes can be made to patient pathways to improve patient care [94,95]. Teams should aspire to perform much of their implant based breast reconstruction as day case procedures and aim to safely discharge DIEP patients on day 3.

- Optimisation of patients: stop smoking/using nicotine containing products for a minimum of a month, reduce body mass index, optimise diabetic control [96].
- Preoperative imaging for perforator flaps has been shown to reduce flap harvest time, operation time and significantly reduce complications in DIEP flap breast reconstruction [97].
- Fasting: Patients should stop solid food intake and be encouraged to drink clear fluids according to local protocols prior to the procedure to minimise pre-operative dehydration.
- Carbohydrate loading: for longer procedures using maltodextrin based drinks may be considered to reduce the catabolic effects of surgery [98].
- Venous thromboembolism (VTE) prophylaxis: VTE complications in patients undergoing DBR (0.41%) and mastectomy with immediate reconstruction (0.52%) are higher than those undergoing wide local excision (0.13%) and mastectomy (0.29%) alone [99]. Unless contraindicated, patients should receive low molecular weight heparin with intermittent pneumatic compression until mobile.
- Surgical Site Infection can be reduced by:
 - Chlorhexidine based skin preparations [100,101].
 - Prophylactic antibiotics [102,103].
 - Antibiotic washout of the breast cavity [104].
- The length of use of preventative antibiotics is harder to quantify. Many units ask patients with implant based reconstruction to continue oral antibiotics until the drains are out, however no randomised controlled trial has been carried out to assess this [17].
- Perioperative nausea and vomiting: 5-hydroxytryptamine-3 antagonists (e.g.ondansetron) reduce post-operative nausea and vomiting, whilst dexamethasone reduces nausea, vomiting and pain.
- Multimodal analgesia: Paracetamol and non-steroidal anti-inflammatory drugs can be given pre-, intra- and post-operatively [95]. Pregabalin reduces post-operative analgesia requirements and pain in mastectomy patients [105]. Analgesia should aim to
be opiate sparing wherever possible. Paravertebral blockade is recommended as the first-choice regional analgesic technique, whilst pectoral nerves block may be used as an alternative to paravertebral block [95]. Local anaesthetic wound infiltration may be added to regional anaesthesia techniques. Transversus abdominal plane (TAP) blocks have been used successfully in DIEP patients [106].

- Reducing Bleeding/Haematoma: Tranexamic acid, an antifibrinolytic agent, reduces mortality in bleeding trauma patients when administered early [107]. There is increasing evidence that tranexamic acid reduces bleeding in the elective surgical setting (particularly orthopaedic surgery) and subsequent need for post-operative transfusion. [108,109] It is now increasingly used in both elective oncological and aesthetic surgery due to the potential benefits of decreased drain output, decreased swelling, decreased bruising [110] and decreased haematoma rate [111].

- Reducing Seroma: The placement of “quilting” or “progressive tension sutures” evenly distributes tension over the whole wound rather than at the incision site, decreases shearing forces and reduces dead space. It reduces drain volumes and incidence of post-operative seroma formation in extended LD [112] and DIEP donor sites [113]. In established seromas the use of intra-cavity Triamcinolone instilled after aspiration reduces re-accumulation [114].

- Prevention of hypothermia: Methods should be employed to warm operating rooms, tables and the patient to prevent hypothermia.

- Peri-operative fluids: Fluid balance should be carefully monitored. Fluid overload can be as detrimental as underload. The use of Vasopressors to maintain adequate mean arterial pressure in already well hydrated patients, are not associated with major flap complications such as thrombotic events and total flap loss. Although they may be associated with an increase in minor complications such as delayed healing, fat necrosis, seroma and infection [115].

- Early feeding: Encourage fluids and return to a normal diet within 24 h. Prescribing laxatives can help counteract any effects of opiates, if used.

- Incisional Negative Pressure Wound Therapy (iNPWT): There is randomised control evidence looking at the use of iNPWT in breast reduction surgery but not in oncoplastic breast surgery. In breast reduction surgery iNPWT is associated with a significant reduction in wound breakdown and improved scar quality [116]. In oncoplastic breast surgery iNPWT reduces seroma, rates of skin necrosis, time for wound healing and surgical site infection [117–119]. There are also reports of reduction in implant loss rates in prepectoral breast reconstruction when iNPWT is utilised and resultant cost-savings in comparison to management of total reconstructive failures to justify their use [120,121]. There is NICE guidance advocating the use of iNPWT in high risk patients and wounds [122].

- Mobilise early and remove urinary catheters in the early post-operative course.

- Each unit should have post-operative flap monitoring protocols and policy for takeback.

- Post discharge: Early physiotherapy, supervised exercise and early follow up phone call from breast care nurse. Consider bra/ support garments 24/7 for 6/52.

- A nominated theatre team with expertise in the preparation and use of equipment and materials required for microvascular surgery and other major reconstructive procedures including primary, revision and salvage surgery.

- A nursing team which should include a BCN or Breast Reconstruction Nurse Specialist appropriately trained in supportive care with specialist knowledge of OP techniques. In addition, a specialist nurse with plastics training will also be involved in managing complex dressings and nipple tattooing.

- A nominated ward team with expertise in monitoring, management and mobilisation of patients following microvascular surgery.

Training in oncoplastic breast surgery in the UK

Oncoplastic breast surgery is incorporated in both the General Surgery Curriculum and the Plastic Surgery Curriculum.

- Surgeons in training via the General Surgery pathway wishing to pursue a career in Oncoplastic Breast Surgery currently must declare a subspecialist interest in Breast Surgery. Their final years of training are dedicated to Breast Surgery and they are expected to obtain experience in Oncoplastic Breast Surgery prior to the award of Certificate of Completion of Training (CCT).

- Surgeons in training via the Plastic Surgery pathway wishing to pursue a career in Oncoplastic Breast Surgery would normally dedicate their final years of training to gaining additional experience in Breast Reconstruction within their programme with many undertaking an additional fellowship in Breast Microsurgery. Additional training in breast Oncology may also be undertaken by some trainees.

Advanced training in Oncoplastic Breast Surgery has been available in the UK via competitive application to the Oncoplastic Breast Surgery Training Interface Group (TIG) Fellowship since 2002. These National Fellowships; overseen by both ABS and BABRAS via the Oncoplastic Breast surgery TIG committee; are open to applicants from General Surgery trainees with a subspecialist interest in Breast Surgery and Plastic Surgery Trainees. The nine 12-month fellowships are designed to give the senior trainee immersive inter-speciality exposure and experience in Oncoplastic Breast Surgery in one of the approved specialist oncoplastic breast surgery training units throughout the UK. During this time trainees are supernumerary. As well as focusing on gaining the background knowledge and operative skills required by an Oncoplastic Breast Surgeon, trainees are encouraged and supported in obtaining skills requisite for independent Consultant practice through compulsory courses and events. The fellowships were traditionally undertaken Pre-CCT award but as from 2021 applications will only be open to Post-CCT trainees.

Data collection and audit requirements

On-going, prospective audit is essential for the provision and maintenance of a high-quality OP surgical service and as a minimum, individual patient care should be audited against agreed performance indicators and target standards including clinical, cosmetic, and patient-reported outcomes.

Each unit should identify an oncoplastic audit lead and have a data manager who assumes overall responsibility for this process. There should be a secure system in place to accurately record complications (early and late)

All patients should be asked to report outcomes, at agreed time intervals, using validated measures e.g. the ‘Breast Q’ questionnaire.

Summary audit data relating to key performance indicators should be presented at department audit meetings. These results should be available for scrutiny by NHS performance monitoring organisations eg the Care Quality Commission (CQC), Safety and Quality Assessment for Sustainability (SQAS), Getting it Right First Time (GiRFT) and other similar bodies.
Conclusion

Patients must be supported through decision making, surgery and recovery if they are to have good outcomes that meet their needs and expectations. Since the first UK oncoplastic guidelines were published in 2007 [123], OPBS has become standard for the surgical management of breast cancer providing good oncological outcomes and acceptable aesthetic results. Oncoplastic surgery is complex and not indicated for every patient. Careful patient selection and the most appropriate surgical technique must be considered to minimise complications and ensure low rates of local recurrence.

Complete list of quality criteria

The complete list of quality criteria set out in this guideline are provided below:

<table>
<thead>
<tr>
<th>No.</th>
<th>Quality criteria</th>
</tr>
</thead>
</table>
| 1 | Breast Reconstruction is discussed with all suitable patients requiring a mastectomy
 Target: Breast Reconstruction is discussed in >90% of all suitable patients requiring a mastectomy |
| 2 | When a referral for OPBS is made from one MDT to another MDT, full clinical, radiological and histopathological information is made available at the time of the referral and reciprocated with a clear plan for ongoing care responsibility
 Target: Full information is available in 100% of patients referred and following treatment |
| 3 | The oncological and reconstructive management is discussed at the MDM.
 Target: The oncological and reconstructive strategy is discussed at the MDM in 100% of patients suitable for OPBS |
| 4 | Medical photography (pre- and post-operative) is part of the clinical record
 Target: Medical photography is offered in 100% of BR patients |
| 5 | Patients have access to a BCN or equivalent key worker with expertise in OPBS
 Target: Access to a key worker with expertise in OPBS and psychological assessment is available in 100% of patients |
| 6 | Patients receive information in a format and level of detail that meets their individual needs.
 Target: Information about the risks and benefits of breast reconstruction/oncoplastic procedures are provided to 100% of patients undergoing OPBS
 Target: Clinical Specialist and psychological reviews take place at key points
 Target: Review by the Clinical Specialist occurs in 100% of cases |
| 7 | Physiotherapy services should be available for patients undergoing OPBS
 Target: 8: 100% availability of Physiotherapy services |
| 8 | Implant loss at 3 months following BR is assessed and audited (over 12 months)
 Target: Complications leading to implant loss occur in <5% of cases at 3 months |
| 9 | Flap loss following BR is assessed and audited (over 3 year period)
 Target: Total free flap loss occurs in <5% of cases
 Target: Pedicled Flap Loss occurs in <10%
 Target: Unplanned return to theatre following BR/OPBS and this should be assessed and audited (over a 12-month period) |
| 10 | Post-operative complications, return to theatre and length of stay are audited
 Target: There is a regular audit of all patients with post-operative complications |
| 11 | Patients’ are invited to report their satisfaction with BR/OPBS using validated outcome measures
 Target: At 18 months, > 90% of BR/OPBS patients are invited to report their satisfaction with BR/OPBS using validated outcome measures |
| 12 | Margins should be clear following OPBS/BR and this be assessed and audited (over a 12-month period)
 Target: Excision margins should be monitored in 100% of cases |
| 13 | Screening for eligibility for clinical trials and national audits occurs in 100% of OPBS/BR patients |
| 14 | Eligible patients are invited to take part in local and national clinical trials of OPBS/BR
 Target: Screening for eligibility for clinical trials and national audits occurs in 100% of OPBS/BR patients |
| 15 | Implant Breast Reconstruction patient details should be entered into the Breast Implant Registry
 Target: 100% of Implant Based Breast Reconstruction patient details are entered into the Breast Implant Registry |
| 16 | Flap-based Breast Reconstruction patient details should be entered into the UK National Flap Registry
 Target: 100% of Flap Based Breast Reconstruction patient details are entered into the UK National Flap Registry |
| 17 | ERAS should be adopted by all units to reduce length of stay
 Target: All units should adopt ERAS methodology |

Funding

None.

CRediT authorship contribution statement

A. Gilmour: Study concepts, Study design, Data analysis and interpretation, Manuscript preparation, Manuscript review
R. Cutress: Study concepts, Study design, Data analysis and interpretation, Manuscript preparation, Manuscript review
A. Gandhi: Study concepts, Study design, Data analysis and interpretation, Manuscript preparation, Manuscript review
E. Pennery: Study concepts, Study design, Data analysis and interpretation, Manuscript preparation, Manuscript review
R. Vidya: Study concepts, Study design, Data analysis and interpretation, Manuscript preparation, Manuscript review
J. Mansell: Study concepts, Study design, Data analysis and interpretation, Manuscript preparation, Manuscript review
J. Murphy: Study concepts, Study design, Data analysis and interpretation, Manuscript preparation, Manuscript review
K. Little: Study concepts, Study design, Data analysis and interpretation, Manuscript preparation, Manuscript review
D. Harcourt: Study concepts, Study design, Data analysis and interpretation, Manuscript preparation, Manuscript review
L. Martin: Study concepts, Study design, Data analysis and interpretation, Manuscript preparation, Manuscript review
J. Murphy: Study concepts, Study design, Data analysis and interpretation, Manuscript preparation, Manuscript review
R. Cutress: Study concepts, Study design, Data analysis and interpretation, Manuscript preparation, Manuscript review

Declaration of competing interest

None.

APPENDIX. SUPPORT SERVICES AND PATIENT INFORMATION

- Breast Cancer Now: https://breastcancernow.org/
- Keeping A Breast: https://www.keepingabreast.org.uk/

References

European Journal of Surgical Oncology xxx (xxxx) xxx

A. Gilmour, R. Cutress, A. Gandhi et al. European Journal of Surgical Oncology xxx (xxxx) xxx

A. Gilmour, R. Cutress, A. Gandhi et al. European Journal of Surgical Oncology xxx (xxxx) xxx

